Face Recognition Algorithm based on Doubly Truncated Gaussian Mixture Model using DCT Coefficients

نویسندگان

  • D. Haritha
  • K. Srinivasa Rao
  • Conrad Sanderson
  • Fabien Cardinaux
  • Samy Bengio
  • Kuldip K. Paliwal
  • Douglas A. Reynolds
چکیده

In this paper a novel and the new method for face recognition is developed and analyzed using doubly truncated multivariate Gaussian mixture model. The 2D DCT coefficients as the feature vector of the each individual face is modelled by k component mixture of doubly truncated multivariate Gaussian distribution. The number of components and initialization of the model parameter’s are obtained by the k-means algorithm and face image histogram. Using the EM algorithm the model parameter’s are obtained. A face recognition algorithm is developed by a maximum likelihood function under baysian framework. The efficiency of the developed algorithm is evaluated by obtaining the recognition rates using JNTUK face database and YALE database. This algorithm out perform the face recognition algorithm based on GMM with DCT coefficients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Face Recognition Algorithm Based on Doubly Truncated Gaussian Mixture Model Using Hierarchical Clustering Algorithm

A robust and efficient face recognition system was developed and evaluated. The each individual face is characterized by 2D-DCT coefficients which follows a finite mixture of doubly truncated Gaussian distribution. In modelling the features vector of the face the number of components (in the mixture model) are determined by hierarchical clustering. The model parameters are estimated using EM al...

متن کامل

Face recognition system based on Doubly truncated multivariate Gaussian Mixture Model

A face recognition algorithm based on doubly truncated multivariate Gaussian mixture model with DCT is introduced. The truncation on the feature vector with a significant influence on improving the recognition rate of the system using EM algorithm with K-means or hierarchical clustering is implemented. The characteristic model parameters are estimated. The EM algorithm containing the updated eq...

متن کامل

Inverted Mel Feature Set based Text-Independent Speaker Identification using Finite Doubly Truncated Gaussian Mixture Model

This paper provides an efficient approach for text-independent speaker identification using the Inverted Mel-frequency Cepstral Coefficients as feature set and Finite Doubly Truncated Gaussian Mixture as Model (FDTGMM). Over the years, Mel-Frequency Cepstral Coefficients (MFCC), modeled on the human auditory system, has been used as a standard acoustic feature set for speech related application...

متن کامل

Speech Enhancement using Laplacian Mixture Model under Signal Presence Uncertainty

In this paper an estimator for speech enhancement based on Laplacian Mixture Model has been proposed. The proposed method, estimates the complex DFT coefficients of clean speech from noisy speech using the MMSE  estimator, when the clean speech DFT coefficients are supposed mixture of Laplacians and the DFT coefficients of  noise are assumed zero-mean Gaussian distribution. Furthermore, the MMS...

متن کامل

Text Independent Speaker Identification Model Using Finite Doubly Truncated Gaussian Distribution and Hierarchical Clustering

In Speaker Identification the goal is to determine which one of a group of a known voice with best matches with the one of the input voices. Modelling the speaker voices is an important consideration for many applications. In developing the model, it is customary to consider that the voice of the individual speaker is characterized with finite component Gaussian mixture model. However, the Mel ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012